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Abstract The pattern of lattice preferred orientation (texture) in deformed rocks is an expression of the strain 
path and the acting deformation mechanisms. A first indication about the strain path is given by the symmetry of 
pole figures: coaxial deformation produces orthorhombic pole figures, while non-coaxial deformation yields 
monoclinic or triclinic pole figures. More quantitative information about the strain history can be obtained by 
comparing natural textures with experimental ones and with theoretical models. For this comparison, a 
representation in the sensitive three-dimensional orientation distribution space is extremely important and 
efforts are made to explain this concept. We have been investigating differences between pure shear and simple 
shear deformation in carbonate rocks and have found considerable agreement between textures produced in 
plane strain experiments and predictions based on the Taylor model. We were able to simulate the observed 
changes with strain history (coaxial vs non-coaxial) and the profound texture transition which occurs with 
increasing temperature. Two natural calcite textures were then selected which we interpreted by comparing them 
with the experimental and theoretical results. A marble from the Santa Rosa mylonite zone in southern California 
displays orthorhombic pole figures with patterns consistent with low temperature deformation in pure shear. A 
limestone from the Tanque Verde detachment fault in Arizona has a monoclinic fabric from which we can 
interpret that 60% of the deformation occurred by simple shear. 

INTRODUCTION 

METAMORPHIC petrologists have invested great efforts 
into establishing the temperature-pressure history of 
rocks by studying chemical reactions which are pre- 
served in mineral assemblages. Many metamorphic pro- 
cesses are intimately related to deformation in the 
earth's crust. Equally important as pressure and temper- 
ature, and generally more difficult to establish, is the 
state of strain and particularly the strain path. A question 
which has intrigued structural geologists for a long time 
is whether coaxial or non-coaxial straining dominates 
during deformation. Arguments for or against both 
concepts fill the literature, dating back to the controversy 
between Becker (1904), who ascribed the development 
of schistosity to shearing, and Leith (1905), who advo- 
cated compressive thinning. Although methods of 
analysis have become refined, there is still wide con- 
troversy on whether highly deformed rocks such as 
mylonites are the result of coaxial thinning (e.g. Rehrig 

& Reynolds 1980, Bell 1981, Lee et al. 1987), or of 
thrusting in large-scale shear zones (e.g. Berth6 et al. 

1979, Lister & Snoke 1984, Simpson 1984, Lister et al. 

1986) (Fig. 1). 
It is generally agreed that much of the deformation of 

mylonites, which display strong preferred orientation of 
constituent minerals, is plastic (ductile) and occurs by 
intracrystalline slip. On the elementary scale of the 
crystal lattice, all deformation by slip takes place in 
simple shear (non-coaxial): dislocations propagate on a 
slip plane and displacements occur in the slip direction in 
increments of the Burger's vector. In general, geologists 
are not concerned with atomic movements within a 
single crystal. Even deformational variations on a larger 
scale due to heterogeneities in rock composition are 
often not relevant to establish the deformation mode of 
large structural units of tectonic significance. Yet it is by 
studying microscopic features and processes that we can 
gain insight into the macroscopic regime of deformation. 
This has been documented on the scale of the petrog- 
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Fig. 1. Schematic diagram illustrating finite strain, coaxial and non- 
coaxial strain modes, and corresponding geological situations, 

raphic microscope with S and C structures (Berth6 et al. 

1979) which are excellent indicators for the sense of 
shear. 

In this paper we explore the development of lattice 
preferred orientations by intracrystalline slip, which is a 
direct result of the simple-shear deformation of compo- 
nent crystals. Preferred orientations not only provide 
information of the sense of shear but also on the relative 
importance of the coaxial and non-coaxial strain compo- 
nents. Lister & Williams (1979) and Lister & Hobbs 
(1980) have investigated preferred orientation in 
sheared quartzite. We analyze calcite polycrystals 
because there is a large amount of experimental data on 
deformation mechanisms, strength and texture develop- 
ment, and marbles and limestones are important compo- 
nents in tectonically active zones. 

Our approach in this study is to first establish texture 
development experimentally, for various conditions. 
The second step is to simulate the texture evolution 
theoretically, using the Taylor model, and to compare 
simulations with experimental results. If satisfactory 
agreement in the orientation distributions suggests that 
the Taylor model is indeed applicable and that par- 
ameters such as critical resolved shear stresses and strain 
increments have been properly chosen, we can then 
proceed with making predictions for conditions for 
which no experimental data exist but which may be 
important geologically. One example is simple-shear 
deformation at low temperature.  Finally, if there is 
evidence that experimental and natural specimens are 
deformed by similar mechanisms (e.g. dislocation micro- 
structures, Barber & Wenk 1979), we are in a position to 
compare natural textures with experimental or theoreti- 
cal textures of a known strain history and, if a close 
coincidence exists, provide an interpretation. 

The use of preferred orientation data in structural 
geology is well established. A qualitative interpretation 
relating the symmetry of pole figures to the symmetry of 
the strain path (Paterson & Weiss 1962) is straightfor- 
ward and easily visualized, but information is limited. 
As soon as we start to comment on changes in patterns 
or pole densities we find it necessary to rely on elaborate 
theories which are not easily accessible and require 
substantial investment. Many of our techniques are 

borrowed from metallurgical research of the last 10 
years, which has lead to a revolution of 'quantitative' 
texture analysis. While we cannot provide an introduc- 
tion of all aspects to the structural geologist, we try to 
elucidate some of the basic issues and refer to pertinent 
literature. A thorough introduction and comprehensive 
bibliography is provided by Wenk (1985). 

We see three major sources of difficulty. The first one 
is texture representation. Pole figures give information 
on the distribution of a single crystal direction (e.g. 
quartz c = [0001] axes) with respect to the sample co- 
ordinates. However,  to describe adequately the texture, 
we must relate the two co-ordinate systems, that of the 
crystal and that of the specimen, and this requires three 
angles instead of two. We will try to explain this three 
dimensional relationship which is called the orientation 
distribution function (ODF). 

The second difficulty concerns the pole figure inver- 
sion needed to obtain the ODF. Some of the complexity 
is alluded to in several chapters of Wenk (1985), and a 
considerable number of definitions and constraints, 
including discussions of errors, are necessary for quan- 
titative texture analysis to be meaningful. We try to 
reduce this discussion to a minimum and have set parag- 
raphs containing technical details in small print. 

The final difficulty lies with Taylor calculations. They 
need to be in five-dimensional space, which is beyond 
visualization. In this paper we leave out all mathematical 
details, and results simply have to be accepted. There is 
considerable literature on this subject such as the excel- 
lent monograph by Gil Sevillano et al. (1980). 

METHODOLOGY 

Genera l  c o m m e n t s  

Ductile deformation of crystals at temperatures less 
than one half the melting point occurs mainly by intra- 
crystalline slip (Frost & Ashby 1982). At higher temper- 
atures diffusion becomes important, and other 
mechanisms become active. This slip on glide planes, if 
proper  boundary conditions are imposed, causes the 
crystal lattice to rotate with respect to an external co- 
ordinate system. For example, if a crystal deforms by 
single slip (only on one slip plane and in one slip direc- 
tion), a shape change is achieved without rotation if the 
crystal is not confined (Fig. 2a). However,  if we impose 
external constraints such as two pistons in a compression 
test which keep two surfaces of the crystal parallel, there 
is an effective external rotation fl of the crystal lattice 
with respect to piston axes (Fig. 2b). In a polycrystal, 
neighboring grains impose similar constraints, leading 
to changes in the orientation distribution of the crystal- 
lites. 

The lattice rotations apply not only to coldworked 
materials but also to dislocation creep (glide plus climb) 
at higher temperatures or slower strain rates, a process 
accepted as the pervasive deformation mechanism under 
many geological conditions. I f - -a t  higher temperatures 
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Fig. 2. During compression a rectangular crystal (a) deforms by slip 
into a parallelogram (b). Since pistons keep two sides of the crystal 
parallel, a lattice rotation, r ,  is imposed with reference to external 

co-ordinate axes (e.g. o11) (c). 

and slow strain rate--dislocation glide is associated with 
climb, climb is generally rate controlling, but only the 
glide component contributes to orientation changes. In 
a glide and climb regime, the resulting pattern of prefer- 
red orientation is similar to that for pure glide, but for a 
given amount of deformation orientation densities are 
less pronounced. Other mechanisms, such as superplas- 
tic flow or cataclastic deformation (as long as crystals are 
equiaxed), do not produce preferred orientation. We 
will not consider recrystallization which may enforce or 
weaken a pre-existing deformation fabric (Gottstein & 
Mecking 1985). In the case of calcitic rocks, we observed 
that recrystallization is often outlasted by deformation 
which overprints the previous history. 

Texture representation 

Preferred orientation which develops during deforma- 
tion is adequately described if we specify the relationship 
between external specimen co-ordinates X ~ Z  ~ and the 
co-ordinates of the individual crystals X~Y~Z c. Three 
angles are required to specify an orientation relation- 
ship, and in a polycrystal we refer to such a representa- 
tion as a three-dimensional orientation distribution func- 
tion, or ODF. 

Cartesian specimen co-ordinates are generally defined on the basis 
of mesoscopic fabric co-ordinates (e.g. X ~ normal to the foliation or 
shear plane, 1 ~ parallel to the lineation, Z ~ normal  to X ~ and Y~, I~Z ~ is 
the foliation plane) or with respect to strain directions (e.g. X ~ parallel 
to the direction of shortening and ~ parallel to the direction of 
elongation in a pure shear deformation experiment).  Crystal co-ordi- 
nates X ~ Z  ~ are assigned in concordance to symmetry elements in the 
crystal. We have followed the convention of Van Houtte  and Wagner  
(1985, p. 252) in placing a Cartesian co-ordinate system in the trigonal 
calcite crystal (Fig. 3a) (note that this convention is different from that  
used by Wagner  et al. 1981). X ~ aligns with the C2 axis of the crystal 
[2TT0] and Z ~ with the C3 axis [0001]. ~ thus falls on [01T0]. 

Structural geologists are more familiar with two- 
dimensional fabric diagrams or pole figures which dis- 
play the distribution of a single crystal direction [uvw] 
(or pole to a lattice plane [hkl]) with respect to specimen 
co-ordinates. This can be done with two angles, a pole 
distance (or co-latitude) and a rotation (or longitude). 
However, a pole figure description is incomplete. From 
a [0001] pole figure it is impossible t o  infer the a axes or 
(2110) distribution, and from a (2110) pole figure it is 
difficult to estimate the c axes or [0001] distribution. 
Therefore pole figures are difficult to visualize and to 
interpret. It would be preferable to have a representa- 
tion in which a density can be associated immediately 
with full orientation information, as is the case for an 
ODF. 

The orientation distribution has been most often rep- 
resented as a three-dimensional density function of 
Euler angles at'Oqb (Roe 1965; note the transformation 
to the Bunge 1965, convention: • = ~t - 90°; O = @, 
@ = ~2 + 900) • We will plot this function in spherical 
co-ordinates as partial [0001] pole figures which represent 
sections of  the crystal orientation distribution (COD) 
(Wenk et al. 1985; Wenk & Kocks 1987). Since this is 
new and, in our view, advantageous, we find a more 
elaborate description necessary. We assume that the 
reader is familiar with fabric diagrams. 

Wenk & Kocks (1987) have used the image of sailboats 
on the ocean. In order to have good information on the 
navigational activity we wish to know for each sector on 
the earth the number of sailboats and the direction in 
which each one is heading (Fig. 4a). Two geographic 
co-ordinates (xt,, O) define the location of the boat on the 
earth, and an azimuthal angle, qb defines the direction in 
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Fig. 3. Definition of co-ordinate systems. (a) Rectangular  co-ordinate system X~I~Z ~ placed in the calcite crystal. (b) 
Definition of Euler  angles o/, O, @ which relate the co-ordinate systems X~I'~Z ~ and A'~Y~ZL (c) Geometr ic  interpretat ion 
of an orientat ion maximum in a partial pole figure (alp = 70 ° section f~om Fig. 7). The full crystal orientat ion can be derived 

with an equal-area net. 
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Fig. 4. Distribution of eight ships (arrows on the surface of the earth). 
There is a cluster of three and a cluster of five ships which head in 
different directions and are thus represented in different qb sections of 
the orientation cylinder. A projection of the • sections gives a 
distribution of all ships irrespective of their heading. Corresponding 

angles 4 ,  ®, ~ are indicated. 

which the boat is heading. We represent and classify now 
in a qb = 0 ° partial pole figure the locations of all those 
boats which are heading towards the point where the 
great circle around the boat position intersects the 
equatorial plane (+ A degrees); in a qb = 10 ° partial 
pole figure the density of those boats heading 10 ° + A 
off that point on the equator;  and so on (Fig. 4b). A 
complete set of partial pole figures contains the full 
information about directions and locations of boats. The 
finer we choose our interval in ~ ,  the higher is the 
resolution of our representation. 

By analogy, crystals could be viewed as having a mast, 
the Z c = [0001] axis, and a heading, the Y~ = [0110] 
direction. If we know the Z ~ axis ( ' location')  and the Y~ 
axis ( 'direction') ,  we know the full orientation of a 
crystal. Assume a certain Z ~ direction specified by two 
angles, qP = 120 ° and O = 60 ° (Fig. 3b). The X ~ and Y~ 
axes of that crystal lie somewhere on a great circle about 
Z ~ (dashed). We specify the location of Y~ by a third 
azimuthal angle, • = 105 °, measured counterclockwise 
away from the equatorial plane X~YL In a partial pole 
figure we collect and display the distribution of only 
those Z c axes which have a particular value of ~ .  By 
contrast, a normal Z ~ = [0001] pole figure displays the 
distribution of all [0001] axes, but does not contain any 
information about Y~" = [01]0] axes. 

In practice we normalize the distribution of individual 
orientations and express them as densities per unit vol- 
ume such that the integral over all locations ( ~ O )  and all 
directions (@) is unity, and contour in the • cylinder 
(Fig. 4b) surfaces of equal density. Since paper  is two- 
dimensional, we represent the three-dimensional distri- 
bution as a finite series of two-dimensional sections, the 
partial pole figures. 

An average of densities (or summation in the case of 
individual orientations) over all partial pole figures 
yields a [0001] pole figure which contains all [0001] axes 
irrespective of their Y~ -- [01]-0] orientation. This aver- 
age can also be viewed as a projection along the cylinder 
axis qb. Because of superpositions, projections are 
always smoother  than the true distribution, and informa- 
tion is lost, as is evident by comparing the bot tom 
diagrams in Fig. 7 and 8 with the CODs above. 

How can we geometrically interpret density variations 
in the COD and determine the full crystal orientation 
which corresponds to a certain maximum in the COD?  
Take.  for example,  the concentration at • = 160 °, 
® = 68 ° in a qb = 70 ° section of an experimentally 
deformed specimen (c.f. Fig. 7). The [01]-0] axis for the 
[0001] axis at q~ = 160 °. (9 = 68 ° lies on a great circle 70 ° 
off the equator  (Fig. 4c): With an equal area net we can 
readily construct the complete orientation (dashed lines 
in Fig. 4c), something which cannot be done from an 
ordinary pole figure. We notice, for example,  that for 
this orientation the compression direction X ~ is nearly 
normal to an e -- (1]-08) plane and the extension direc- 
tion Y~ is nearly normal to a f = (]-012) plane. Such a 
coincidence of certain crystal and sample directions is, 
however,  purely geometrical and can be used to describe 
texture components.  It does not allow an immediate 
physical interpretation about deformation mechanisms 
such as that the slip plane normal should be parallel to 
the compression axis, as may be the case if a single 
crystal deformed by single slip and were not confined by 
neighbors. It should be understood that the COD is a 
comprehensive method for representing and visualizing 
an orientation distribution. It is not a means for inter- 
preting textures. The latter can be approached with 
model calculations such as the Taylor theory. 

Note that partial pole figures for calcite have only to extend from 
O = 0 ° to 120 ° due to the trigonal crystal symmetry, i.e. [0it0], [1010] 
and [1100] are equivalent (Fig. 3a). Also, specimen symmetry is 
expressed in the COD. A two-fold axis in Z ~ is immediately visible (c. f. 
Fig. 7 for orthorhombic and Fig. 8 for and monoclinic symmetry). A 
two-fold rotation in X ~ (orthorhombic specimen) in combination with 
a two-fold rotation in X ~ (symmetry of calcite with C2 in [1120]) (Fig. 
3a) produces an equivalence of angles q~, O, • and 180 - W, O, 
180 - @, respectively, 180 - ~!-', O, 60 ° - • (Helming and Matthies, 
1984). This means that for orthorhombic specimens we only need qb 
sections from 30 to 90 ° (only those are reproduced in the pure shear 
CODs of Fig. 7; note that sections from 0 to 60 ° do not provide 
sufficient information). The three angles, 4 ,  O, qb of  the COD 
(longitude, latitude and azimuth) are identical to the Euler angles of 
the ODF which are three rotations to bring the crystal co-ordinate 
system A~Y~Z~ to coincidence with the specimen co-ordinate system 
A~Y~Z ~ (Bunge 1965, Roe 1965). The partial [0001] pole figures (COD) 
are just a different way of looking at qb-sections of an ODF which we 
find much easier to visualize and to interpret than the traditional 
Cartesian representations. 

Textures in this paper are represented as selected (0006) and (1 [20) 
pole figures (Figs. 5 and 6) and as partial pole figures (CODs) (Figs. 7 
and 8). Note that by convention, the origin o f ~  in partial pole figures 
is by definition in the E point (Figs. 7 and 8). Therefore, [0001] pole 
figures which are projections of the COD (bottom row of Figs. 7 and 8) 
are rotated 90 ° clockwise relative to measured pole figures which are 
shown with horizontal foliation plane (Fig. 5). 

Pole figures of experimental and natural samples (Figs. 5 and 6) were 
measured by X-ray and neutron diffraction. In the case of X-rays, pole 
figures are incomplete, due to a defocusing effect which adds some 
uncertainty at high angles. In addition, the c-axis pole figures of calcite 
that geologists are most familiar with are difficult to measure with 
X-ray techniques_because the (00(16) reflection is very weak and close 
to the strong (t014) reflection. We have added the (0006) pole figures 
in Fig. 5 for reference but have not used them in the ODF calculations. 
Similarly with neutrons, (t120) and (2052) are very weak whereas 
(0006) is strong, and again we selected those which are most reliable. 
The COD of these samples has then been obtained by deconvolution 
of three to five pole figures using the method WIMV (Matthies & Vinel 
1982) for triclinic specimen symmetry and trigonal crystal symmetry. 
The near orthorhombic or monoclinic specimen symmetry expressed 
in the CODs is not implied in the pole figure inversion, but results from 
the actual symmetry of the deformation process. We have previously 
applied the harmonic method and obtained ODFs from five pole 
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Table 1. Specifications for samples, pole figure measurements and ODF calculation 

Sample 

WIMV-ODF 
Pole Figures Used Minimum Maximum Average 

(N = neutron, X = X-ray m.r.d, error R 

K 373,100~C pure shear Xl10, X104, X202 0.29 4.72 4.85% 
K 338,300"C pure shear N006, N104, N012, N113 0.30 3.26 4.06% 
K 371,400°C simple shear N006, N012, Nl13, N104 0.21 5.79 3.17% 
OS21 Palm Canyon Xl l0 ,  X104, X202 0.17 6.51 4.56% 
TV1 Tanque Verde Xl l0 ,  X104, X202 0.44 2.14 7.22% 

735 

figures (Wagner et al. 1984), but we found that results with WIMV--  
while qualitatively similar--are more consistent, and agreement 
between observed and recalculated pole figures is much better. Table 
1 gives information about the pole figure selection and also shows 
average errors between observed and recalculated pole figures. This 
error reflects the quality of the measured data used in the calculations. 
Pole figures and the CODs of theoretical predictions were calculated 
by expanding 5760 individual orientations with spherical harmonics to 
order I = 16 using even and odd functions (Wagner et al. 1981). 

EXPERIMENTS 

Most deformation experiments on minerals have been 
performed in axial compression. Only a few plane strain 
experiments have been conducted which allow us to 
address the problem of distinguishing between pure and 

simple shear. In this comparative study we rely on 
experiments on fine-grained limestone discussed by 
Wenk et al. (1981) and Wagner et al. (1982) for pure 
shear and by Kern & Wenk (1983) for simple shear and 
refer the reader to the original papers for experimental 
details. In these experiments grains became flattened 
and distinct preferred orientation patterns developed at 
about 10% strain (Wenk et al. 1981). Preferred orienta- 
tion increased with further straining, and we illustrate 
textures of samples which have been shortened 30--40%. 
There is no optical or TEM evidence for recrystallization 
in any of the samples. Pole figures are displayed with the 
direction of no deformation (e2) in the center of the pole 
figure (Figs. 5 and 6). Pole figures (Figs. 5 and 6) and 
CODs (Figs. 7 and 8) document a texture transformation 
between 200 and 300°C (at 1 0 - 4 - 1 0 - 6 s  - l )  w h i c h  we 

TAYLOR 

PURE SHEAR SIMPLE SHEAR 

LT HT LT HT 

EXPERIMENTAL 

NATURAL 

¢,1 

Fig. 5. c = [0001] pole figures of carbonate polycrystals. Those for experimental and natural samples are direct measure- 
ments. Complete pole figures have been measured by neutron, incomplete ones by X-ray diffraction. Equal-area 
projection. Contour interval for all is 0.5 m.r.d, except for TV2, where it is 0.1 m.r.d. Lowest contour is 0.5 m.r.d, shaded 

above 1 m.d.r. 

SG 9 : 5 / 6 - R  
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Fig, 6. a = (2110) pole figures of carbonate polycrystals. Same specifications as for Fig. 4 except that contour intervals are 
0.25 m.r.d, shaded above 1 m.r.d. 

associate with changes in the critical resolved shear 
stress of active slip systems. Corresponding textures will 
be referred to as LT (low temperature) and HT  (high 
temperature) in the subsequent discussion. We have 
explored temperature as the most important variable. 
Clearly, strain rate should also be considered. It is 
generally thought to have an inverse effect on textures 
(Tullis et al. 1973). Furthermore,  pressure and grain size 
may influence active mechanisms, particularly twinning, 
but data are insufficient to include these variables in our 
discussion. 

For pure shear, pole figures (Fig. 5) and CODs (Fig. 
7) are orthorhombic. Note that the two-fold axis Z ~ in all 
experimental partial pole figures is not perfect but 
closely approached; in addition, sections at ~b = 30 ° and 

= 90 ° show mirror planes. As mentioned above, ~-  
sections 0-30 ° and 90-120 ° are symmetrically related to 
those from 30-90 ° and are not shown. At low tempera- 
tures, c-axes are concentrated in a broad maximum 
parallel to the direction of principal compression. At 
higher temperature this maximum splits into two max- 
ima displaced about 30 ° towards the extension direction. 
The low temperature (LT) partial pole figures all have 
some similarity and do not change much as a function of 

(Fig. 7, second column), indicating that a-axes of 
crystals have considerable rotational degree of freedom 
about their c-axes. This is not the case for high tempera- 
ture (HT),  where each partial pole figure is distinct (Fig. 

7, right column). The main maximum is in the • = 70 ° 
section at • = 160 ° and O = 90 ° and extends through 
several ~ sections. The second feature is a cross 
(~  = 30 ° section) which rotates slightly with increasing 

and displaces maxima on it towards higher 19 angles. 
So far, experimental deformation in simple shear at 

low temperatures has not been successful in the 
apparatus used by Kern & Wenk (1983). Brittle failure 
occurs and no ductile shear bands develop. At higher 
temperature,  good textures develop. The symmetry is 
monoclinic, with only a single two-fold axis Z ~. The 
[0001] pole figure (Fig. 6) resembles a pure shear H T  
pole figure rotated by the shear angle (Kern & Wenk 
1983). However,  when comparing the H T  COD for pure 
shear and simple shear (right columns in Figs. 7 and 8), 
it is clear that this analogy is only superficial (in these 
representations we assume that the shear plane is normal 
to X~). For the same finite strain the simple shear texture 
is much stronger; furthermore,  most maxima are at 
19 = 90 °, and the cross-like component  is nearly absent. 

SIMULATIONS 

In the previous sections we have learned how to use 
the COD to describe textures and how to read these 
diagrams to obtain information about the crystal orienta- 
tion distribution. We have then documented that in 
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TAYLOR EXPEFIMENT NATURAL TAYLOR 
LT K373, 100=C OS21 HT(e) 

I-ff 

EXPERIMENT 
K338, 300=C 

Fig. 7. Partial [0001] pole figures (CODs) in Roe (1965) co-ordinates for calcite polycrystals deformed in pure shear. 
Equal-area projection. Contour intervals are 0.5 m.r.d. ; minimum contour is 0.5 m.r.d. Texture components a, fl, y, 6 are 

indicated. The bottom diagrams are q~ projections and represent [0001] pole figures. 

experimentally deformed limestone, preferred orienta- 
tions develop and patterns change as a function of 
temperature and strain. The next problem is to interpret 
the COD in terms of physical deformation mechanisms. 
One error that has occurred is to intuitively associate an 
orientation maximum with a specific slip system 
( h k l ) [ u v w ] .  Given the complex constraints and processes 
during polycrystal deformation, such a direct interpreta- 
tion is oversimplified and lacks physical justification, as 
has also been pointed out by Lister & Hobbs (1980) and 
Gil Sevillano et al. (1980). For example, face-centred 
cubic metals deformed by (111) slip do not show a (111} 
maximum near the compression direction and calcite 
deformed by r = (1014} slip and e = (0118} twinning 
has no concentration of compression directions at either 
of these orientations. As in many other fields of science 
there are two levels of interpretation: one is pattern 
recognition; another explains patterns in terms of physi- 
cal processes. The COD is used to represent texture data 
in a similar way as a ternary diagram serves to display 
geochemical data. In order to interpret a ternary dia- 
gram, (e.g. in terms of a crystallization sequence in 
igneous rocks) we have to compare the observations 
with either a theoretical model or experimental results. 

We have used the Taylor theory to model texture 
development; it applies to homogeneous deformation of 
polycrystals by slip and mechanical twinning. The basic 
principles of the Taylor model as applied to calcite have 
been described by Lister (1978), Wagner et al. (1982), 
Van Houtte & Wagner (1985), and Wenk et al. (1986a). 
Five independent slip systems are necessary to deform a 
crystal in a general orientation to an arbitrary shape 
prescribed by the strain tensor. Of all potential slip 
systems, the combination of those five is chosen that 
requires the least amount of work. Knowing the activity 
on each system, we can then calculate for every crystal 
an effective internal rotation (Fig. 2) for a given strain 
increment. As the critical resolved shear stresses 
(c.r.s.s.) of slip systems change (e.g. with increasing 
temperature), different slip systems become active and 
crystals undergo different rotations. 

We can best understand important texture transitions 
such as L T - H T  of calcite by analyzing the topology of 
the single crystal yield surface (SCYS) (Lister 1978, 
Takeshita et al. 1987). The yield surface represents the 
yielding condition in five-dimensional stress space. Each 
slip plane is represented in this space by a hyperplane 
whose distance from the origin is the c.r.s.s. The inner 
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TAYLOR NATURAL TAYLOR EXPERIMENT 
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Fig. 8. Partial [0001] pole figures (CODs) in Roe (1965) co-ordinates for calctte polycrystals deformed in simple shear. 
Equal-area projection. Contour intervals are 0.5 mr,d.  ; minimum contour is 0.5 m.r.d. Bottom diagrams are [0001] pole 

figures. 

envelope of these hyperplanes is the SCYS. When a 
stress vector reaches this surface, yielding occurs. A 
two-dimensional analogy is illustrated in Fig. 9. The 
yield surface in Fig. 9(a) consists of four active slip 
systems and has four vertices. At each vertex, possible 
strain states are contained within a cone of normals. In 
order to satisfy any arbitrary state of strain, the yield 
surface needs to be closed. Slip in the positive and in the 
negative sense (e.g. sT, sy) may have different c.r.s.s., 
resulting in a different distance of the hyperplane from 
the origin. Mechanical twinning can only operate in one 
sense. 

Modifications of the SCYS occur when the relative 
strengths (c.r.s.s.) of slip systems change. A slip system 
s~ lies in Fig. 9(a) outside the SCYS and is not activated. 

In the case of Fig. 9(b), the hyperplane s~ has intersected 
vertex 111 and created two new vertices, V~ and V~I. The 
topologies (or surface geometries) of the two SCYSs are 
different, resulting in activity of different slip systems 
and thus producing different textures. In order to calcu- 
late the SCYS, and for Taylor texture simulations, it is 
necessary to know all potential slip and twinning systems 
and their c. r. s. s. Whereas most agree that e twinning and 
r and f slip are the dominant systems at all temperatures,  
there is still considerable uncertainty about the exact 
values of c.r.s.s, at given conditions. We rely on experi- 
mental single crystal data as much as possible (see Table 
2 and Wenk 1985, table 1, p. 363 for references). But to 
be more confident in the applicability of the simulations 
it was necessary to explore systematically the influence 



Pure shear and simple shear calcite textures 739 

v~~. e.O 

S , + ~  ,,,)(/ CONE OF 

~ [ .[.(Sa÷ ) NORMAL8 2.0 

0 
S3 ÷ 

19 
Fig. 9. Schematic sketch of a two-dimensional single crystal yield 
surface. (a) Slip systems s~, s~, s~, s~ are active, resulting in four 
vertices. (b) rc of system s~ is reduced, destroying vertex V1 and 
creating new vertices V A and Val, resulting in five vertices. The cone of 

strain normals associated with each vertex is shaded. 

of c.r.s.s, variations on the SCYS and on texture 
development. This can be achieved with a topology 
study (Lister 1978, Takeshita et al. 1987). In this we 
assume that e, r andfsys tems are potentially active and 
explore the range within which c.r.s.s, can be varied 
without causing a major change in the combined acti- 
vated slip systems. Figure 10 illustrates a simplified 
topology diagram for e ÷, r - ,  r ÷ and f -  systems. We plot 
it in a two-dimensional space of c.r.s.s, for f -  and e ÷, 
normalized to r- and for a fixed a '+. In each of the fields 

!iiii!iiii!iii!iii l ....... iiiiiiiiil!  

i i!i!i!iiiiii#i i 

iii!!i!iiiiiiiiiii 
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Fig. 10. Simplified topology diagram for the SCYS of calcite. Main 
activities of slip systems are indicated and c.r.s.s, assumptions used in 
this paper for LT, HT(a) and HT(b) simulations (from Takeshita e t a l .  

1987). c.r.s.s, are normalized to r - =  1.0. The co-ordinates are 
a f -  = rc(f-)/r~(r-)  and a e  + = rc(e+)rc(r-). The.normalized c.r.s.s. 
of a r  + = 1.5 for all simulations. Major topologic domains are indi- 
cated and labelled (B, C, D, E, F, G, I, J and K). The LT field in which 
textures are almost identical is shaded. Most natural calcite textures 

reported so far seem to have developed in this field. 

separated by straight lines the topology of the SCYS is 
the same; i.e. it has the same corners, edges and faces, 
and therefore the same combination of slip systems are 
active. (This is not quite true because this simplified 
diagram only shows divisions with major changes. A 
detailed topology diagram is shown by Takeshita et al. 

1987.) Particularly in the large shaded area where r and 
e dominate, simulated textures are almost identical. In 
this field the c.r.s.s, values correspond to those observed 
in single crystals at low temperature and textures com- 
pare with the LT experimental textures (see next sec- 
tion). Crossing from the shaded into the white area the 
active mechanisms change drastically. One r-  or one e ÷ 
system is replaced by one f -  system (Takeshita et al. 

1987, table 4). With r, e and f -  equally active, textures 
are much more complex and correspond to HT experi- 
mental textures. Based on single crystal data and on 

Table 2. Normalized critical shear stresses for model calcite polycrystals 

Glide system 

Number of a = 'rX/'r '- equivalent 
systems Symbol LT HT(a) HT(b) 

Slip 
{1014}(2021)* 
{1014}(2021) 
{T012}(0221)(2201) 
{T012}(0221)(2201) 
Twinning 
{1018}(4041) 

3 r + 1.6 1.5 2.0 
3 r -  1.0 1.0 1.0 
6 ~ 2.8 ~ 2.0 
6 F 1.6 1.0 1.0 

3 e + 0.4 3.0 3.0 

* All indices refer to the c = 17/~ hexagonal unit cell. 
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Table 3. Displacement gradient tensors used in the Taylor simulations 
of this study. Zero components in the plane of no deformation are 

omitted. Ten incremental steps are applied 

Pure Shear Simple Shear 

(-0.0,, 0 ' 

Pure shear~simple shear combined 

25% Simple Shear 50% Simple Shear 75% Simple Shear 

(-0.0475 0 ' ,-0.036 0 0.0158) 0.0317 (,.0475) 0.036) (-0.0158 0 , 0.072 , \ 0.0904 

Pure shear followed by simple shear 

Simple Shear Simple Shear 
Parallel to the Foliation Diagonal to the Foliation 

0 , - 00 ,  00 ) * " , o o) ( %  ,o , o ,* (o .1  

SCYS considerations we have chosen two conditions to 
represent LT (in field E) and HT  conditions (in field H). 
Textures are insensitive to variations within field H or 
fields B, C, D, E or F, which makes us confident that 
simulations are valid even if the c.r.s.s, are slightly in 
error. 

Some comments on c.r.s.s, ratio values in Table 2 are 
in order. LT values include r ÷ and F ,  but with a high 
c.r.s.s, r ÷ is not part of the SCYS and the activity o f f  ~ is 
negligible. At H T  we have two models: (a) does not 
include f+; (b) includes f~, which has the effect of 
reducing the activity of e twinning. HT  (b) corresponds 
to higher temperature conditions than HT  (a). H T  (a) 
conditions were used to simulate the 300°C pure shear 
experiment and HT  (b) to simulate the 400°C simple 
shear experiment. 

Simulated textures for pure shear and for simple 
shear, using displacement gradient tensor increments 
shown in Table 3, are very different both at LT and at 
HT. This is first expressed in the symmetry and can 
already be seen on pole figures. The relationship can be 
described very roughly as a rotation of the texture 
against the sense of shear by the shear angle. But there 
are also distortions of the texture which result in monoc- 
linic symmetry in the case of simple shear. 

COMPARISON OF EXPERIMENTAL AND 
SIMULATED TEXTURES 

In the previous sections we have introduced pole 
figures and CODs which characterize experimentally 
deformed limestones and calcite polycrystals subjected 
to a simulated deformation. Figures 5-8 document 
similarities and differences between corresponding pat- 
terns. The [0001] pole figures (Figs. 5 and 6) show an 
excellent correspondence and can be compared 
immediately by visual inspection. In the case of CODs 
(Figs. 7 and 8), patterns are much more complex and we 

find it useful to characterize the calcite textures by 
'texture components '  which represent maxima in the 
orientation distribution. At LT (Taylor) and 100°C (ex- 
periment),  all @ sections of the COD are dominated by 
a component a at ~u = 0 o and O = 90 ° (Fig. 7). In the 
case of pure shear, the ~-component is parallel to the 
compression direction (Fig. 7). In simple shear it is 
rotated away from the shear plane normal against the 
sense of shear (Fig. 8). Based on calculated slip activities 
on various systems, Takeshita et al. (1987) have 
associated this component with prevalent e twinning and 
r-  slip. 

The H T  (Taylor) and 300°C (experiment) texture is 
far more complex and we need several components to 
describe it: fl and ~, form a cross-like structure, while 6 
(at xF = 90 °, ® = 90 °) is parallel to the extension direc- 
tion. The components are symmetrical in pure shear and 
rotated against the shear sense in simple shear. The fl 
and ~ components develop when all slip systems (r, f ,  e) 
are equally active and the b component  when e twinning 
is reduced. 6 becomes dominant as temperature 
increases. Comparing these components (orientation 
maxima), we find a good correspondence between 
experiments and simulations even though there are dif- 
ferences in relative intensities of the peaks and also in 
minor features of the patterns. These differences can be 
attributed to rather special aspects of techniques and 
boundary conditions which we will discuss briefly in the 
following paragraphs. We will explore sample 
heterogeneity, errors in pole figure measurements, 
ambiguities due to pole figure inversion, and uncertainty 
of c.r.s.s, values in Taylor calculations or general 
applicability of the Taylor model. 

Samples deformed in the triaxial apparatus (Kern 
1977) are inherently heterogeneous,  particularly in pure 
shear geometry. Pole figures constructed from X-ray 
reflection scans of the central portion of the 2 x 2 cm 
specimen display about 20% higher peak intensities than 
neutron diffraction pole figures which average over a 
cubic volume of 1 x 1 x 1 cm. This heterogeneity is 
mainly due to a strain gradient (strains near the pistons 
are reduced) and to a much lesser extent to minor shear 
bands which develop from thc sample corners. The 
sample heterogeneity is a minor problem with respect to 
the general texture pattern, but it accounts for the 
relatively high errors in ODF calculations if neutron and 
X-ray pole figures arc combined (Table 1). 

Pole f igure measurements  by X-ray diffraction are 
subject to errors introduced by empirical intensity cor- 
rections and a blind region due to a defocusing effect 
which makes normalization difficult. The establishment 
of meaningful error criteria has become a major concern 
of quantitative texture analysis. One minimal require- 
ment is that in a single pole figure with more than one 
symmetrically equivalent pole {hkl}  the density distribu- 
tion is geometrically possible, i.e. that crystallographic 
constraints and correlations are satisfied. This is best 
analyzed by comparing experimental pole figures with 
pole figures recalculated from the ODF. Matthies & 
Wenk (1987) have determined that for perfect pole 
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figures the error is 1-2% (mainly due to the discretiza- 
tion and to rounding errors) and for good real pole 
figures it is 2-5%. If errors are larger than 15%, pole 
figures should not be used or should be remeasured 
(compare Table 1). 

Ambiguities arise in the pole figure inversion; one 
uncertainty is introduced by the resolution of the method 
(about 1% for WIMV and the harmonic method). The 
resolution of the inversion method is illustrated by com- 
paring observed pole figures which were not used in the 
inversion with calculated ones. For example, the (0006) 
X-ray pole figure of OS21 (Fig. 5) was difficult to meas- 
ure and was not included in the ODF calculation. It 
shows a rather asymmetric subsidiary concentration near 
the center. The ODF calculated [0001] pole figure (bot- 
tom diagram in Fig. 7) shows the same subsidiary con- 
centration; it is therefore not an experimental artifact 
and demonstrates resolution of pole figure measure- 
ments and of ODF calculations. Another ambiguity 
arises from the general indeterminability (Matthies 
1979, 1982). We have estimated effects of indetermina- 
bility by expressing Taylor distributions with even and 
odd harmonic functions. For these particular calcite 
textures, the indeterminable odd contribution, which 
we cannot determine from pole figures without making 
somewhat arbitrary assumptions, ranges from -0.9 to 
1.3 m.r.d. This is the maximum error which could be 
introduced by the inversion. Fortunately, the even and 
even + odd CODs show a similar pattern, and the main 
difference lies in peak intensities. 

Another factor which causes a discrepancy between 
observed and simulated CODs is contained in the Taylor 
model. We are confident that our calculations were done 
with c.r,s.s, values corresponding to the correct major 
topologic domain (Fig. 10); there is less certainty about 
the proper subdomain, which can cause variations in the 
orientation distribution, particularly in the relative 
importance of a, fl, y and ~ components (Takeshita et al. 
1987). The 5 component which increases when twinning 
becomes subordinate may have been underestimated in 
the HT(b) simple shear simulation. The assignment of a 
c.r.s.s, for mechanical twinning is quite arbitrary, since 
twins nucleate at local stress concentrations. This should 
be explored both experimentally and theoretically, 
because changes in the activity of twinning emerges as a 
controlling factor for texture development in calcite. We 
have also assumed in all calculations that the c.r.s.s, is 
constant during the whole deformation path and there- 
fore have not considered dislocation work hardening or 
latent hardening. We also assumed that deformation 
was strictly homogeneous. Wenk et al. (1986b) have 
shown that for axisymmetric deformation (compression 
or extension) of calcite, strain can be heterogeneous; i.e. 
not every grain undergoes the same shape change as the 
whole polycrystal, and a so-called relaxed Taylor theory 
needs to be applied. In plane strain--at least for moder- 
ate strains--problems of heterogeneities appear to be 
insignificant. 

In order to have direct proof of the applicability of the 
Taylor theory we would need to identify microstructural 

evidence for the activity of slip systems as a function of 
orientation which is extremely complicated because slip 
systems change along the strain trajectory. To our know- 
ledge no such study for any material has been attempted 
so far and the best evidence for the applicability of a 
model relies with a similarity of textures. It should be 
noted, however, that all grains have similar aspect ratios 
which is consistent with homogeneous deformation. We 
conclude that there is overall agreement, both in pole 
figures and ODFs, between observed and calculated 
textures, and therefore our predictions of deformation 
textures of calcite at LT and HT, in pure shear and in 
simple shear are meaningful. With some confidence we 
can therefore also predict textures for strain paths which 
can, at present, not be reproduced experimentally. One 
important case is simple shear deformation at LT (Fig. 
8). Other cases are complex strain paths discussed in the 
next section. 

GEOLOGIC APPLICATION AND DISCUSSION 

We have shown in the previous sections that calcite 
polycrystals deformed in plane strain develop textures 
which are characteristic of the strain path. Since overall 
agreement exists between experiments and Taylor pre- 
dictions, we can use Taylor predictions to try to match 
the CODs of naturally deformed carbonate rocks with 
the simulations and obtain information about the defor- 
mation history. We choose two samples of strongly 
deformed marble. 

The first one, OS21, is a mylonitic marble from the 
Palm Canyon Formation in the eastern part of the Santa 
Rosa mylonite zone in southern California (Erskine & 
Wenk 1985, Erskine 1987). Isoclinally folded marbles 
alternate with sillimanite schists, leucocratic gneisses 
and amphibolites which were deformed at upper- 
amphibolite grade of metamorphism. The sample is one 
of about 20 which have been analyzed, and appears to be 
representative. The pole figures and the COD are 
approximately orthorhombic: in the pole figures this is 
evident in mirror planes, in the COD it is present as a 
two-fold axis and an equivalence of • and 180 ° - ~  
sections. The COD agrees closely with Taylor predic- 
tions for low temperature where e twinning is the domin- 
ant mechanism and for pure shear which implies a 
coaxial strain path. This led Erskine & Wenk (1985) to 
suggest that coaxial flattening rather than shearing was 
the dominant mechanism for the formation of marble 
mylonite in Palm Canyon. The high peak maxima (4.0 
m.r.d.) imply that the finite strain exceeded 30% shor- 
tening, at which level LT Taylor calculations predict that 
texture reaches more or less a steady-state pattern 
because of the compensating effects of twinning and slip. 

The second sample, TV2, is a strongly lineated marble 
outcropping adjacent to the detachment fault of the 
Tanque Verde core complex in southern Arizona (Davis 
1980). In contrast to the Santa Rosa sample, mirror 
planes are absent in pole figures. The [0001] maximum 
and the [2110] girdle are inclined about 20 ° to the 
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Fig. 11. [0001] pole figures for LT simple shear Taylor predictions illustrating effect of increasing strain. Note that the 
maximum does not rotate with increasing shear. Equal-area project ion.Contour  interval 0.5 m.r d., minimum contour 0.5 
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foliation plane. The COD still shows a two-fold axis, but 
@ and 180 ° - qb sections are no longer equivalent. This 
suggests that the strain path has a significant non-coaxial 
component. From the displacement ~o of the [0001] 
maximum away from the foliation plane normal (as- 
sumed shear plane) we can determine the sense of shear. 
In the case of the Tanque Verde sample it suggests that 
the top was displaced towards the SW, which agrees with 
geological evidence (Wust 1986). 

CODs and pole figures of these natural carbonate 
fabrics correspond closely to LT Taylor predictions and 
we think therefore that similar mechanisms were active 
as were assumed in the predictions; i.e. e twinning and 
r-slip were dominant. 

So far we have relied heavily on three-dimensional 
orientation distributions both for Taylor calculations 
and texture representations. Without this, conclusions 
would all be at the qualitative level of the symmetry 
concept. But having established relationships, and hav- 
ing identified mechanisms, we now return for simplicity 
to [0001]-axis pole figures to illustrate some additional 
features of texture development. Once a system has 
been thoroughly investigated a lot of information can be 
obtained from the more familiar pole figures and it is not 
necessary to calculate an ODF for every sample as long 
as the texture fits into a previously characterized type. 

LT-Taylor calculations for simple shear document 
that the displacement angle of the [0001] maximum, ~o, 
does not change with increasing deformation and is 
therefore independent of the shear angle (Fig. 11). The 
total shear is expressed in peak densities. If simple shear 
is combined with pure shear (Fig. 12), the displacement 
angle ~o is smaller. It varies almost linearly with the 
relative amount of simple and pure shear (Fig. 13). [We 
define the percentage of simple shear in terms of dis- 

placement gradient tensor components as 100 x e~y/ 
(e~ + exy)]. An angle of 20 ° indicates that 60% of the 
deformation occurred by simple shear and 40% by shor- 
tening. 

Schmid et al. (1981), Dietrich & Song (1984) and 
Dietrich & Durney (1985) have analyzed the sense of 
shear from textures in limestones from thrust planes in 
the Helvetic nappes of the Alps. They proposed a 
method for estimating the simple shear component from 
the angle between the normal to the macroscopic cleav- 
age and the [0001] maximum corresponding to our angle 
w (Dietrich & Song 1984, fig 7). With their method, 
which makes different assumptions, they suggest that for 
100% simple shear the [0001] maximum is inclined 45 °, 
whereas based on Taylor calculations it is expected to be 
at 36 ° (Figs. 11 and 13). 

We have so far looked at rather simple strain histories, 
namely pure shear (Table 3, equation la),  simple shear 
(equation lb), and a combination of the two (equation 
lc). Taylor calculations can also predict texture develop- 
ment in more complex strain paths. We have investi- 
gated cases where pure shear (coaxial) deformation is 
followed by simple shear. First we assumed that the 
shear plane is normal to the shortening direction (Fig. 
14a). Two [0001] maxima of different intensity develop. 
Maximum I is attributed to pure shear and weakens 
during simple shear deformation. Maximum II develops 
during simple shear and becomes dominating. We then 
assumed that the shear plane is inclined 45 ° (Fig. 14b). In 
this case a very strong and slightly asymmetric [0001] 
maximum develops at 45 ° to the shear plane. Notice that 
the influence of the original texture is still seen in 
intensity and pattern after an overprint of 30% strain 
(Fig. 11,6 steps and Fig. 14a & b). 

It is interesting to explore stress-strain behavior for 
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Fig. 12. [0001] pole figures of LT Taylor predictions for a displacement gradient tensor with a coaxial and a non-coaxial 
component  (Table 3) (combination of pure and simple shear). Equal-area projection. Contour interval 0.5 m.r.d. ,  

minimum contour 0,5 m r . d .  
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Fig. 13. Angle oJ between the [13001] maximum and the pole to the 
shear plane (Fig. 11) for LT-Taylor predictions as a function of simple 

shear contribution to the deformation tensor. 

these various strain paths. An 'average stress' may be 
defined which is proport ional  to the work which is 
necessary to accommodate  an incremental  strain. The 
average stress is proport ional  to the Taylor  factor which 
we obtain from Taylor  calculations (Wenk et al. 1986a). 
Therefore  we can calculate with the Taylor  theory a 
stress-strain curve for the material  which shows whether  
the polycrystal becomes stronger or weaker  as preferred 
orientation develops. We wish to apply this to complex 
deformat ion paths discussed above. Unfor tunate ly  there 
are no reliable experimental  data for stress-strain curves 
of calcite polycrystals deformed in plane strain, and we 
must rely entirely on simulations. The stress-strain 
curves in Fig. 15(a) predict that for pure shear, simple 
shear and a combination of the two, the material  
becomes weaker  with increasing deformation.  In simple 
shear this geometr ic  weakening is least pronounced.  For 
a combination of pure and simple shear the average 
stress is intermediate.  F rom a work point of view, pure 

I LCl 

b c3 

Fig. 14. [0001] pole figures for complex deformation paths in which a 
pure shear deformation is followed by a simple shear deformation (c.f. 
Fig. 15). (a) Shear plane perpendicular to el of the pure shear tensor. 
(b) Shear plane at 45*. Equal-area projection. Contour interval 0.5 

m.r.d., minimum contour 0.5 m.r.d. 

shear deformation is most  advantageous because crystals 
are rotated into orientations which are most  favorable 
for further deformation.  It  is therefore likely that if a 
unit is deformed by pure shear, continued deformation 
will be concentrated in the same unit rather  than in 
adjacent,  less deformed and stronger ones. This might 
account for the presence of strongly deformed,  mylonitic 
carbonate bands intercalated in moderate ly  deformed 
marbles in the Santa Rosa mylonite zone. 

Figure 15(b) shows that if pure shear is followed by 
simple shear, the orientation of the shear plane is of 
utmost  importance.  If  the shear plane lies in the foliation 
plane, crystals are in an unfavorable orientation for 
simple shear, and the material hardens abruptly, making 
this an unlikely event. By contrast,  if shear planes are 
inclined at 45 °, crystals are in a favorable orientation, 
and the transition f rom one regime to the other occurs 
smoothly and the resulting stress-strain curve is difficult 
to distinguish from that for pure shear, as is the texture. 
Interestingly, in all geological examples of simple shear 
in carbonates reported so far, shear planes are parallel to 
the regional foliation as defined by compositional layer- 
ing. This seems to imply that deformation in shear zones 
such as those in the Alps described by Schmid et al. 
(1981) and Dietrich & Song (1984) started initially by 
simple shear, on a thrust plane and not as a secondary 
shear band in a homogeneously  deforming sequence. 
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Fig. 15. Calculated stress-strain curves [mean stress (o) vs von Mises equivalent strain ev~ and the compressive strain 
component el] illustrating hardening and weakening behavior for various strain histories. (a) Transition from pure to 

simple shear. (b) Pure shear followed by parallel ($11) and diagonal ($12) simple shear. 
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We have documented in this paper that crystallo- 
graphic preferred orientation is a sensitive indicator of 
the strain path and allows us to distinguish between 
simple shear and pure shear, to determine the sense of 
shear, the component of simple shear and to estimate 
the finite strain. Taylor calculations also show that 
characteristic texture patterns develop for more complex 
strain paths such as a succession of pure and simple 
shear. Ultimately, of course, a previous texture pattern 
becomes obliterated. This depends on the specific type 
of texture and the strain history. As has been shown 
above (Fig. 14), 30% strain is not sufficient to erase a 
pre-existing pattern and therefore textures do not reflect 
the last small strain increment such as is often the case 
for dislocation microstructures, but a large segment of 
the deformation history. 

Taylor calculations are specific to a particular 
material, and results cannot be generalized, especially 
not to polymineralic rocks. Nevertheless, it is note- 
worthy that quartzites show a similar behavior as far as 
the rotation of fabric patterns in simple shear is con- 
cerned (e.g. Lister & Hobbs 1980, Price 1985). Quartz 
also shows fabric transitions with temperature changes 
and textures which are much sharper compared to cal- 
cite. These transitions have been very useful in delineat- 
ing isograds in deformed metamorphic belts (e.g. Hof- 
mann 1978). One drawback is that quartz fabrics display 
a great variety of patterns caused by fabric transitions, 
strain history, often complicated by accompanying 
recrystallization and heterogeneous deformation 
(Takeshita & Wenk 1985). Natural calcite fabrics are far 
more monotonous,  and those reported so far--within a 
wide range of geological temperatures, strain rates and 
grain sizes--all  seem to belong to the LT texture type. It 
implies that for some reason, which needs to be further 
investigated, e twinning is more prevalent in geological 
situations than it is in experimental deformation. This 
has the advantage that we are in the large LT topology 
which is insensitive to minor changes in c.r.s.s, ratios, 
and observed fabric variations can be attributed solely to 
the deformation history and can therefore be interpreted 
with a fair degree of confidence. We propose that the 
methodology illustrated here should be used to investi- 
gate preferred orientation of carbonate rocks in many 
areas of tectonic interest. It is also essential to study 
experimentally the influence of the strain rate on the 
LT-HT fabric transition to guide us in locating natural 
calcite HT fabrics. 

Acknowledgements--The results reported here have been collected 
over many years and have involved collaboration with several col- 
leagues whose contributions are mentioned as references. We are 
particularly indebted to H. Kern, Kiel (for experiments); to S. Hoefler 
and W. Schaeffer, Jiilich (for neutron diffraction pole figure measure- 
ments); and to P. Van Houtte, Louvain, A. Vadon and F. Wagner, 
Metz (for computer programs). We also appreciate field trips in 
Arizona with G. Davis and B. Smith. H.-R. Wenk acknowledges 
support through grants NSF EAR 84-06070 and IGPP-LANL. The 
thorough reviews by J. Tullis and W. Means have contributed greatly 
to improving the manuscript. 

REFERENCES 

Barber, D. J. & Wenk, H. R. 1979. On geological aspects of calcite 
microstructure. Tectonophysics 54, 45-60. 

Becker, G. F. 1904. Experiments on schistosity and slaty cleavage. 
Bull. U.S. geol. Surv. 241, 1-34. 

Bell, T. H. 1981. Foliation development--The contribution, geometry 
and significance of progressive, bulk, inhomogeneous shortening. 
Tectonophysics 75,273-296. 

Berthr, D., Choukroune, P. & ,legouzo, P. 1979. Orthogneiss, mylo- 
nite and non-coaxial deformation of granites: the example of the 
South Armorican Shear Zone. J. Struct. Geol. 1, 31-42. 

Bunge, H. J. 1965. Zur Darstellung allgemeiner Texturen. Z. Metall. 
56,872-874. 

Davis, G. H. 1980. Structural characteristics of metamorphic core 
complexes, southern Arizona. Mem. geol. Soc. Am. 153, 35-77. 

Dietrich, D. & Durney, D. W. 1985. Change of direction of overthrust 
shear in the Helvetic nappes of Switzerland. J. Struct. Geol. 8. 
389-398. 

Dietrich, D. & Song, H. 1984, Calcite fabrics in a natural shear 
environment; the Helvetic nappes of western Switzerland. J. Struct 
Geol. 6, 19-32. 

Erskine, B. G. & Wenk. H.-R. 1985. Evidence for Late Cretaceous 
crustal thinning in the Santa Rosa Mylonite Zone, Southern Califor- 
nia Geology 13,274-277 

Erskine, B. G 1987. Depositional environment and metamorphism of 
the Palm Canyon formation, Southern California. In: Prebatholithic 
Rocks of the Peninsular Ranges Batholith (edited by Gastit, R. G., 
& Miller. R.) Mem. geol. Soc. Am. In press. 

Frost. H. J. & Ashby, M. F. 1982. DeJormation Mechanism Maps, The 
Plasticity and Creep of Metals and Ceramics. Pergamon Press, 
Oxford. 

Gil Sevillano. J.. Van Houtte. P. & Aernoudt, E. 1980. Large strain 
work hardening and textures. Progr. Mater. Sci. 25, 69-412. 

Gottstein. G. & Mecking, H. 1985. Recrystallization. In: Preferred 
Orientatton in Deformed Metals and Rocks. An Introduction to 
Modern Texture Analysis (edited by Wenk H.-R. )., Academic Press 
New York, 183-218. 

Helming, K. & Matthies. S. 1984 On the interpretation of orientation 
distributions and qualitative ghost corrections for hexagonal- 
orthorhombic textures. Phys. Star. Solid. B126, 43-52. 

Hofmann. J 1978. Ouarzgefi~ge (c-Achsen Orientierung) der 
Metamorphite des Erzgebirges und des sachsischen 
Granulitgebirges als tektonische [ndikatoren VerafJ~ Zent. Inst. 
Erdb. Forsch. Potsdam 53.81-100. 

Kern. H 1977. Preferred orientation of experimentally deformed 
limestone marble, quartzite and rock salt at different temperatures 
and states of stress. Tectonophysics 38. 103-120. 

Kern. H. & Wenk. H.-R. 1983. Texture development in experimen- 
tally induced ductile shear zones. Contr. Miner. Petrol. 83, 231-236. 

Lee. J.. Miller. E L. & Sutter J. F. 1987. Ductile strain and 
metamorphism in an extensional tectonic setting: a case study from 
the northern Snake Range, Nevada U.S.A. Spec. Pubis. J. geol. 
Soc. Lond. Continental Extensional Tectonics. In press. 

Leith C. K. 1905. Rock cleavage. Bull. U.S. Geol. Surv. 239, 1-216. 
Lister. G. 1978. Texture transition in plastically deformed calcite 

rocks. In: Proc 5th lnt. Con/: on Textures of  Materials, Vol. 2 
(edited by Gottstein, G. and t, ticke, K.). Springer Verlag, Heidel- 
berg, 199-210. 

Lister, G. S., Etheridge, M. A. & Symonds, P. A. 1986. Detachment 
faulting and the evolution of passive continental margins. Geology 
14,246-250. 

Lister, G. S. & Hobbs, B. t:. 198(I. The ,simulation of fabric develop- 
ment during plastic deformation and its application to quartzite 
fabric transitions. J. Struct. Geol. 1.99-115. 

Lister, G. S. & Snoke, A. W. 1984. S-C mylonitcs. J. Struct. (;col. 6, 
617-638. 

Lister, G. S. & Williams, P. F 1979. F'abric development in shear 
zones: theoretical controls and observed phenomena. J. Struct. 
Geol. 3,283-297. 

Matthies, S. 1979. On the reproducibility of the orientation distribu- 
tion function of texture samples from pole figures (ghost pheno- 
mena). Phys. Status Solid. B92. 135-138. 

Matthies, S. 1982. Aktuelle Probleme der Texturanalyse. Rosscndorf- 
Dresden, Akad. Wiss., D_ D. R., Zentralinstitut fiir Kernforschung. 

Matthies, S. & Vinel, G. W 1982. On the reproduction of the 
orientation distribution function of texlurized samples from reduced 
pole figures using the conception of a conditional ghost correction. 
Phys. Status Solid. BlI2, I11-120 



Pure shear and simple shear calcite textures 745 

Matthies, S. & Wenk, H.-R. 1987. Some basic requirements in 
quantitative texture analysis. J. appl. Cryst. In press. 

Paterson, M. S. & Weiss, L. E. 1961. Symmetry concepts in the 
structural analysis of deformed rocks. Bull. geol. Soc. Am. 72, 
841-882. 

Price, G. P. 1985. Preferred orientations in quartzites. In: Preferred 
Orientation in Deformed Metals and Rocks. An Introduction to 
Modern Texture Analysis (edited by Wenk, H.-R.). Academic 
Press, Orlando, Florida, 385--406. 

Rehrig, W. A. & Reynolds, S. J. 1980. Geologic and geochronologic 
reconnaissance of a northwest trending zone of metamorphic core 
complexes in southern and western Arizona. In: Cordilleran 
Metamorphic Core Complexes (edited by Crittenden, M. D., Jr., 
Coney, P. J. & Davis, G. H.). Mere. geol. Soc. Am. 153,131-157. 

Roe, R. J. 1965. Description of crystallite orientation in polycrystaUine 
materials. II. General solution to pole figure inversion. J. appl. 
Phys. 36, 2024-2031. 

Schmid, S. M., Casey, M. & Starkey, J. 1981. The microfabric of 
calcite tectonites from the Helvetic nappes (Swiss Alps). In: Thrust 
and Nappe Tectonics (edited by McClay. K & Price, N. J.). Spec. 
Pubis geol. Soc. Lond. 9, 151-158. 

Simpson, C. 1984. Borrego Springs-Santa Rosa mylonite zone: a Late 
Cretaceous west-directed thrust in southern California. Geology 12, 
8-11. 

Takeshita, T., Tom6, C. N., Wenk, H.-R. & Kocks, U. F. 1987. The 
single crystal yield surface of calcite polycrystals and texture transi- 
tions. J. geophys. Res. In press. 

Takeshita, T. & Wenk, H.-R. 1985. The effect of geometrical soften- 
ing on heterogeneous plastic deformation in quartzites. EOS, Trans. 
Am. geophys. Un. 66, 1085. 

Tullis, J., Christie, J. M. & Griggs, D. T. 1973. Microstrnctures and 
preferred orientations of experimentally deformed quartzites. Bull. 
geol. Soc. Am, 84,297-314. 

Van Houtte, P. & Wagner, F. 1985. Development of textures by slip 
and twinning. In: Preferred Orientation in Deformed Metals and 
Rocks. An Introduction to Modern Texture Analysis (edited by 
Wenk, H.-R.). Academic Press, Orlando, Florida, 233-258. 

Wagner, F., Wenk, H.-R., Esling, C. & Bunge, H. J. 1981. Impor- 
tance of odd coefficients in texture calculation for trigonal-triclinic 
symmetries. Phys. Status Solid. A67,269-285. 

Wagner, F., Wenk, H.-R., Kern, H., Van Houtte, P. & Esling C. 
1982. Development of preferred orientation in plane strain 
deformed limestone. Experiment and theory. Contr. Miner. Petrol. 
80, 132-139. 

Wagner, F., Wenk, H.-R., Kern, H. & Van Houtte, P. 1984. Evolu- 
tion of deformation textures in calcite. Proceedings Seventh Int. 
Conf. on Textures of Materials, Zwijndrecht, Holland, 165-171. 

Wenk, H.-R. (Ed.). 1985. Preferred Orientation in Deformed Metals 
and Rocks. An Introduction to Modern Texture Analysis. Academic 
Press, Orlando, Florida. 

Wenk, H.-R. & Kooks, U. F. 1987. The representation of orientation 
distributions. Metall. Trans. IgA, 1083-1092. 

Wenk, H.-R., O'Brien, D. & You, Z. 1985. Spherical representation 
of orientation distribution functions. Phys. Status Solid. Ag0, K19. 

Wenk, H.-R., Takeshita, T., Van Houtte, P. & Wagner, F. 1986a. 
Yield strength and texture development of calcite polycrystals, J. 
geophys. Res. 91, 3861-3869. 

Wenk, H.-R., Kern, H., Van Houtte, P. & Wagner, F. 1986b. 
Heterogeneous strain in axial deformation of limestone, textural 
evidence. Am. Geophys. Un. Monogr. 36,287-295. 

Wenk, H.-R., Kern, H. & Wagner, F. 1981. Texture development in 
experimentally deformed limestones. In: Deformation of Polycrys- 
tals: Mechanisms and Microstructures, Proc. 2nd Riso International 
Symposium on Metallurgy and Materials Science, 235-245. 

Wust, S. 1986. Regional correlation of extension directions in Cordille- 
ran metamorphic core complexes. Geology 14,828--830. 


